preprints_ui: 53esy_v1
Data license: ODbL (database) & original licenses (content) · Data source: Open Science Framework
id | title | description | date_created | date_modified | date_published | original_publication_date | publication_doi | provider | is_published | reviews_state | version | is_latest_version | preprint_doi | license | tags_list | tags_data | contributors_list | contributors_data | first_author | subjects_list | subjects_data | download_url | has_coi | conflict_of_interest_statement | has_data_links | has_prereg_links | prereg_links | prereg_link_info | last_updated |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
53esy_v1 | Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics | The popularity of deep reinforcement learning (DRL) methods in economics have been exponentially increased. DRL, through a wide range of capabilities from reinforcement learning (RL) to deep learning (DL), offers vast opportunities for handling sophisticated economics dynamic systems. DRL is characterized by scalability with the potential to be applied to high-dimensional problems in conjunction with noisy and nonlinear patterns of economic data. In this paper, we initially consider a brief review of DL, RL, and deep RL methods in diverse applications in economics, providing an in-depth insight into state of the art. Furthermore, the architecture of DRL applied to economic applications is investigated in order to highlight the complexity, robustness, accuracy, performance, computational tasks, risk constraints, and profitability. The survey results indicate that DRL can provide better performance and higher efficiency as compared to the traditional algorithms while facing real economic problems at the presence of risk parameters and the ever-increasing uncertainties. | 2020-10-14T20:18:55.082649 | 2020-10-20T10:13:42.146359 | 2020-10-20T10:13:18.555738 | frenxiv | 1 | accepted | 1 | 1 | https://doi.org/10.31226/osf.io/53esy | GNU Lesser General Public License (LGPL) 3.0 | deep learning; deep reinforcement learning; economic; engineering; estimation; huge data; model; modeling; prediction | ["deep learning", "deep reinforcement learning", "economic", "engineering", "estimation", "huge data", "model", "modeling", "prediction"] | Amir Mosavi; Pedram Ghamisi; Yaser Faghan; Puhong Duan; Sina Faizollahzadeh Ardabili; Ely Salwana; Shahab Band | [{"id": "rx2k7", "name": "Amir Mosavi", "index": 0, "orcid": "0000-0003-4842-0613", "bibliographic": true}, {"id": "c7kaq", "name": "Pedram Ghamisi", "index": 1, "orcid": null, "bibliographic": true}, {"id": "mj3cx", "name": "Yaser Faghan", "index": 2, "orcid": null, "bibliographic": true}, {"id": "yjqz8", "name": "Puhong Duan", "index": 3, "orcid": null, "bibliographic": true}, {"id": "vmtuw", "name": "Sina Faizollahzadeh Ardabili", "index": 4, "orcid": null, "bibliographic": true}, {"id": "nw4ca", "name": "Ely Salwana", "index": 5, "orcid": null, "bibliographic": true}, {"id": "f8v73", "name": "Shahab Band", "index": 6, "orcid": null, "bibliographic": true}] | Amir Mosavi | Engineering | [{"id": "5a57dc2b076808000d8157e9", "text": "Engineering"}] | https://osf.io/download/5f875d4a37b6bb0138307d12 | 0 | no | no | [] | 2025-04-09T20:03:52.199964 |