preprints_ui: e75gc_v1
Data license: ODbL (database) & original licenses (content) · Data source: Open Science Framework
id | title | description | date_created | date_modified | date_published | original_publication_date | publication_doi | provider | is_published | reviews_state | version | is_latest_version | preprint_doi | license | tags_list | tags_data | contributors_list | contributors_data | first_author | subjects_list | subjects_data | download_url | has_coi | conflict_of_interest_statement | has_data_links | has_prereg_links | prereg_links | prereg_link_info | last_updated |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
e75gc_v1 | Data science in economics: comprehensive review of advanced machine learning and deep learning methods | This paper provides a state-of-the-art investigation of advances in data science in emerging economic applications. The analysis was performed on novel data science methods in four individual classes of deep learning models, hybrid deep learning models, hybrid machine learning, and ensemble models. Application domains include a wide and diverse range of economics research from the stock market, marketing, and e-commerce to corporate banking and cryptocurrency. Prisma method, a systematic literature review methodology, was used to ensure the quality of the survey. The findings reveal that the trends follow the advancement of hybrid models, which, based on the accuracy metric, outperform other learning algorithms. It is further expected that the trends will converge toward the advancements of sophisticated hybrid deep learning models. | 2020-10-15T23:14:34.886362 | 2020-10-20T10:14:26.085592 | 2020-10-20T10:13:56.488325 | frenxiv | 1 | accepted | 1 | 1 | https://doi.org/10.31226/osf.io/e75gc | CC-By Attribution 4.0 International | artificial intelligence; cryptocurrency; customer behavior; data science; deep learning; e-commerce; economics; ensemble machine learning models; forecasting; hybrid machine learning; machine learning; prediction; stock market; stock market price; stock market value; stock value | ["artificial intelligence", "cryptocurrency", "customer behavior", "data science", "deep learning", "e-commerce", "economics", "ensemble machine learning models", "forecasting", "hybrid machine learning", "machine learning", "prediction", "stock market", "stock market price", "stock market value", "stock value"] | Saeed Nosratabadi; Amir Mosavi; Puhong Duan; Pedram Ghamisi; Ferdinand Filip; Shahab S. Band; Uwe Reuter; Joao Gama; Amir H. Gandomi | [{"id": "8q6td", "name": "Saeed Nosratabadi", "index": 0, "orcid": "0000-0002-0440-6564", "bibliographic": true}, {"id": "rx2k7", "name": "Amir Mosavi", "index": 1, "orcid": "0000-0003-4842-0613", "bibliographic": true}, {"id": "prqma", "name": "Puhong Duan", "index": 2, "orcid": null, "bibliographic": true}, {"id": "yjt52", "name": "Pedram Ghamisi", "index": 3, "orcid": null, "bibliographic": true}, {"id": "ths3g", "name": "Ferdinand Filip", "index": 4, "orcid": null, "bibliographic": true}, {"id": "yeds8", "name": "Shahab S. Band", "index": 5, "orcid": null, "bibliographic": true}, {"id": "ca57e", "name": "Uwe Reuter", "index": 6, "orcid": null, "bibliographic": true}, {"id": "pkas9", "name": "Joao Gama", "index": 7, "orcid": null, "bibliographic": true}, {"id": "nuhyg", "name": "Amir H. Gandomi", "index": 8, "orcid": null, "bibliographic": true}] | Saeed Nosratabadi | Business; Management Sciences and Quantitative Methods; Management Information Systems; Business and Corporate Communications; Business Administration, Management, and Operations; Marketing; Social and Behavioral Sciences; Business Intelligence; Advertising and Promotion Management; Entrepreneurial and Small Business Operations; E-Commerce; Corporate Finance; Engineering; Insurance; Finance and Financial Management; Economics; Computational Engineering; Finance | [{"id": "5a57dc21076808000d815734", "text": "Business"}, {"id": "5a57dc22076808000d815736", "text": "Management Sciences and Quantitative Methods"}, {"id": "5a57dc22076808000d815738", "text": "Management Information Systems"}, {"id": "5a57dc22076808000d815739", "text": "Business and Corporate Communications"}, {"id": "5a57dc22076808000d81573b", "text": "Business Administration, Management, and Operations"}, {"id": "5a57dc23076808000d81573d", "text": "Marketing"}, {"id": "5a57dc24076808000d81573f", "text": "Social and Behavioral Sciences"}, {"id": "5a57dc24076808000d815741", "text": "Business Intelligence"}, {"id": "5a57dc25076808000d81574e", "text": "Advertising and Promotion Management"}, {"id": "5a57dc25076808000d815754", "text": "Entrepreneurial and Small Business Operations"}, {"id": "5a57dc26076808000d815759", "text": "E-Commerce"}, {"id": "5a57dc28076808000d815791", "text": "Corporate Finance"}, {"id": "5a57dc2b076808000d8157e9", "text": "Engineering"}, {"id": "5a57dc2b076808000d8157ed", "text": "Insurance"}, {"id": "5a57dc2b076808000d815803", "text": "Finance and Financial Management"}, {"id": "5a57dc2c076808000d815822", "text": "Economics"}, {"id": "5a57dc33076808000d815946", "text": "Computational Engineering"}, {"id": "5a57dc3d076808000d815b2c", "text": "Finance"}] | https://osf.io/download/5f88d7dfd85b70020b656a87 | 0 | not_applicable | not_applicable | [] | 2025-04-09T20:03:45.894322 |